INTERNET 2012 : The Fourth International Conference on Evolving Internet

The Super-Browser: A new Paradigm for Web Applications

Mark Wallis, Frans Henskens, Michael Hannaford
Distributed Computing Research Group
University of Newcastle
Newcastle, Australia
Email: mark.wallis@uon.edu.au, frans.henskens@newcastle.edu.au, michael hannaford@newcastle.edu.au

Abstract—The modern web browser performs a multitude
of tasks, which were never contemplated in its original design.
This work investigates the roles and responsibilities of the
various components that comprise the web browser, and a
traditional web application. We review the web browser’s
role in the greater architecture and propose that a ”Super
Browser” concept need not mean greater responsibilities for
the web browser application. Instead, the solution described in
this work introduces a distributed approach that is capable
of executing applications composed of distinct components.
The paper presents an implementation of this concept, and a
comparison of this approach with a traditional web application
framework.

Keywords-web browser; cloud; personal data; architecture.

I. INTRODUCTION

Web Browsers were traditionally designed to render static
content sourced from remote web servers. Textual content
and page format were provided as static HTML and selected
multimedia types were then rendered via subsequent requests
to the server. As the World Wide Web has evolved, so have
the web browsers. Web Browsers today support features such
as dynamic content rendering and the execution of pluggable
code modules. These features have been gradually added
as requirements have arisen, and were never part of the
original specification of tasks a web browser was required to
perform. As such, the stability and security of web browsers
has been brought into question [1]. The latest attempts
to address these issues have seen introduction of further
features such as HTMLS [2] and execution sandboxing
[3]. Simultaneously, web applications have also evolved.
Various software development models now exist for the
development of web applications and the increased use of
Cloud Computing [4], [5] has introduced new concepts and
new challenges [6].

The system presented in this work introduces a new way
of designing and developing web applications. The role of
the web browser is reduced to its originally intended role,
that of a content renderer. Web Applications are presented as
a set of inter-related components. Components may execute
anywhere within the user’s environment, and may be specif-
ically tasked with such roles as content generation, data
storage, and background processing. A work-in-progress
implementation of this design is presented and functionally

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

compared to existing solutions. Metrics are presented show-
ing that this solution has performance that is comparable to
existing designs. Finally, we present a summary of future
work in this area.

II. PROBLEM DESCRIPTION

There is no doubt that over the past few years, web
browsers have had more than their share of performance and
security related issues [1]. As the user interface requirements
of web applications evolved, the trend has been to push more
and more features into the web browser. An alternate design
approach would be to revert to traditional thick-applications
hosted at the client (an appropriate way, perhaps, of de-
scribing the current *fattening’ browsers?), with the client
application using network messages to interact with remote
databases. It seems clear, however, that web applications
do provide many advantages over client-hosted thick appli-
cations, for example, ease of deployment and centralised
management. During our review of the current technologies
it became apparent that each design methodology had its
own positives and negatives:

1) The web application approach provides developers
with positives in the areas of ease of deployment,
centralised management, and standards-based devel-
opment. On the negative side, web browsers are not
consistent in the implementation of the ’standards’, so
developers are required to consider each specific web
browser, making sure that the end product handles
specific quirks of the browser implementations and
versions. Additionally, the implementation of web
applications with fully dynamic user interfaces includ-
ing high-quality video and user interaction are often
problematic, relying on closed-sourced web browser
plugins such as Adobe Flash [7] and Microsoft Sil-
verlight [8]. On the positive side, web application tech-
nology makes it easier to develop a program that can
execute across disparate processor/operating system
combinations without having to compile specifically
for each environment.

2) Thick applications provide a solid means of imple-
menting tasks (that, incidentally, have proven to re-
quire ever increasing client processing capabilities),

24

INTERNET 2012 : The Fourth International Conference on Evolving Internet

but are limited in their utilisation of distributed tech-
nology. For example, the distributed deployment sce-
nario in which each user has their own locally installed
instance of each application causes problems when it
comes to patching, and deploying software updates.
There are also limitations when it comes to developing
an application that can execute on multiple different
platforms, with compilation of a specific binary re-
quired for each platform. While languages such as Java
have addressed this issue through the use of common
byte-code, it locks the developer into only being able
to support a single language.

3) The “application store” concept is a newly emerging
architecture that attempts to blend the ease of deploy-
ment of web applications with the stability and feature
set of thick applications. Application stores provide
distribution, and in some cases, patching functional-
ity without limiting execution to within a restricted
sandbox, such as the web browser.

It has become clear during this review that the ability to
blend the above approaches would be beneficial to both the
software developer and the end user. The design presented
in the remainder of this paper provides a component-based
approach to generation of an environment that takes the best
features from the above architectures.

III. SYSTEM DESIGN

By using a component-based system architecture we can
address many of the concerns raised in the preceding section.
The design of this system can be viewed from four per-
spectives: component execution, component communication,
user interface, and data storage.

A. Component Execution

A component-based architecture allows a developer to
design and build an application using multiple, distinct,
independently executing components. With the support of
an appropriate runtime environment, these components can
be implemented in different programming languages, and
can execute in a distributed fashion with components be-
ing hosted, perhaps, by different hardware/operating system
platforms. This architecture builds on that used for existing
web service [9], [10] approaches, in which a web application
makes use of a set of services to perform a particular task.
The system we describe in this paper extends this concept
to present the entire web application as an orchestrated set
of components.

Components may be specified as being of the following
kinds:

o Execution components present only an interface, which
may be called (executed) by other components. They
are generally used for processing tasks (such as en-
cryption), and background service tasks (such as exter-
nal notifications). These components execute within a

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

runtime environment and may be physically deployed
across a range of locations such as on a user’s local
machine, on a specific server, or in a Cloud Computing
environment.

o User interface components integrate with a web
browser to generate an HTMLS [2], [11] compatible
interface to the user. This provides realisation of the
“super browser” concept without the overhead (and
browser ’fattening’) of code execution within the web
browser itself. User interface components execute in
a runtime environment that is process-separate to the
web browser process. Communication between the web
browser and the user interface component is performed
through a strict interface, implemented in our pilot
system as a set of JavaScript functions within the web
browser and call-back functions in the user interface
component. Security is ensured through process sep-
aration and monitors, while stability is addressed by
ensuring all calls between the user interface component
and the HTML realisation of the interface in the web
browser are executed through well defined functions,
as opposed to Domain Object Model (DOM) [12]
manipulation.

« Data Storage components are similar to execution com-
ponents, in that they present a callable interface, but
in addition they are backed by persistent storage. The
interface exposed by these components is tightly cou-
pled to the data object(s) being persisted. Data storage
components implement specific data objects, but they
may share a common persistence model between them,
such as a relational or NoSQL database.

« Finally, bootstrapping components provide an entry
point for application orchestration. They are responsible
for defining which other components are required to
execute an application, and for requesting instantiation
of those components. Bootstrapping components are
registered in the “application directory”, so that users
can view which applications are being presented by the
system.

A specific application many consist of multiple instances
of each of the above kinds of component. Each component
may execute within a separate execution environment, but
logical groupings will be evident in most designs. For
example, user interface components would typically exe-
cute on the same host as the web browser. Data storage
components would often be grouped together, and execute
on the same machine that hosts the related data store. It
is the responsibility of the component runtime environment
to select the appropriate location of execution for each
component.

Figure 1 depicts the high-level system design. Component
1 (C1) is a data storage component. C2 is a user interface
component and C3/C4 are execution components. The bot-

25

INTERNET 2012 : The Fourth International Conference on Evolving Internet

tom half of the figure depicts a deployment scenario of these
components running in a distributed fashion across various
environments, including a mobile device, a server farm and
a Cloud Computing environment.

Development IDE

!
=
o
2
Y
Users Nam espace
__ !
} Resource ool |
_________________________ |
| ormmmmmm e -
:Userlnterface Storage Device }REWDYE Processing
1 Device } Cluster
~—) o e
[=]) [=]) [=])

|
|
|
|
|
|
! 37
|
=]
|
I
!
|
|
|

Deployet Resources

i |
1 |
| I
| 1
1o |
[|
[|
(. 1
(. 1
(. |
[|
1ol I
(. |
(. |
[|
(. I
(. 1
1! 1
T T T T T T 'I'_T ____________ T_“

[1
(. 1
[|
[i
+—+

(. |
(. |
[|
[|
[[
(. 1
(. |
[|
1ol I
(. 1
1o |
[|
[|
(. 1
(. |
(. |
[|
(. I
[|

,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1. Distributed Component Model

B. Component Communication

Once components are instantiated across various environ-
ments, they need the ability to communicate in some fashion.
Existing SOA-style architectures rely on each component
establishing point-to-point channels for message passing,
which provides the means for inter-component communi-
cation. While effective in dynamically orchestrated envi-
ronments, the use of point-to-point channels does not typ-
ically scale well. Solutions such as Enterprise-Service-Bus
architectures [13] look to address this problem by providing
a common communication backbone for inter-component
communication, but these buses also do not scale to Internet-
wide component execution, as they typically rely on a single
(non-global) bus instance. Any inter-bus communication is
generally statically configured.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

The bus architecture implemented in our design provides a
massively distributed channel, with which multiple users can
pass messages between components via the same bus, while
retaining security and privacy through use of namespace
techniques. Each machine that executes/hosts a component
has its own local instance of the communication bus. Each
bus instance is able to locate and pass messages to other
buses using a logically centralised repository of end points.
Each user in the environment has their own local endpoint
sub-repository, which provides a way of locating specific
instances of components.

The communication bus takes care of all inter-component
message passing. Components are only required to cor-
rectly address and pass messages back up to the hypervisor
provided by the runtime environment. Each component is
only able to address components within its own application
namespace, or components that have been marked as public
in the component directory. The communication backbone
takes care of resolving these requests to specific instances
and locating the specific bus that has local addressing to the
addressed component.

C. User Interface

Dynamic user interfaces in traditional web applications
rely on Javascript code executing within the web browser
runtime, which is capable of directly accessing and mod-
ifying the interface via the DOM. Each web browser’s
implementation of the DOM is known to have its own
specific variations from the official specification, and as such
this method of building a user interface is common seen as
unstable [14].

The user interface component in our proposed design
separates code execution from the web browser itself. This
separation limits the web browser to simply providing a
basic shim that can alter specific DOM elements. Full DOM
access is not provided to the executable code, limiting the
scope of potential issues caused by non-standard DOMs.
The interaction between user interface components and the
HTML realisation of the interface within the web browser
is implemented via a strictly defined interaction interface.
The actual rendering of the HTMLS5 content is performed
by pre-existing rendering engines. This approach removes
the need for complicated plugin and closed-sourced com-
ponents, which can affect the stability of the web browser
process.

D. Data Storage

Data Storage in the current generation of web applications
is the responsibility of the web application itself. This
introduces problems such as data duplication, data freshness,
and data ownership [15]. The design for data persistence
in our new system is tied closely to that developed in our
previous research [16]. Accordingly this new system pushes
the responsibility for data storage on to the end user. Data

26

INTERNET 2012 : The Fourth International Conference on Evolving Internet

Storage components will exist for each data object within
an application, but the actual persistence framework will
be managed by the end users, rather than by web service
providers. This ensures that applications are provided a
stable interface to data objects, without needing to take
actual responsibility for the storage mechanism itself. Data
storage components will often execute on servers, or in
cloud environments, as examples of locations from which
end users are able to procure storage services as required.

Figure 2 shows at a high level how the distributed data
storage system works in a Web 2.0 scenario. This proven
[16] approach has the data owner publishing their data to
the DSS - Data Storage Service. Web Applications subscribe
to this information using a publish/subscribe algorithm.
Users of the Web Application access both the application
itself (for HTML/framework/etc) and the DSS (for direct
access to stored data). The user access to the DSS occurs
using a SAML-based secure handoff technique and is key
in providing a solution that performs in a way that is
comparable to existing technologies.

WEB 2.0 App

Figure 2. DSS

IV. IMPLEMENTATION

The authors have completed a pilot implementation of
the system architecture presented in this paper. The initial
deployment provides Java language support for all compo-
nent types, though the communication channel is not limited
to communicating only with components executing within
a Java Virtual Machine. Applications can be orchestrated
from the bootstrap component, and the components are
instantiated in a distributed manner. Runtime support exists
for the following environments:

e Microsoft Windows.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

o Ubuntu Linux.
¢ Amazon EC2 Cloud.

User interface support is currently implemented using
Gecko, the rendering engine from Mozilla Firefox [17].
The interaction between user interface components and the
HTML realisation of the interface is currently implemented
through the use of a TCP link with a Firefox web browser
plugin. Ultimately, implementation of the rendering engine
will be completely split from the traditional web browser
process and wrapped in a thinner shim, thus removing much
of the unnecessary plugin and sandboxing features that are
made redundant by this solution. The component execu-
tion environment is implemented within a Java Application
Server (Glassfish [18]) and the component communication is
realised through the user of a customised Enterprise Service
Bus (Glassfish ESB).

V. EVALUATION

A functional evaluation has been performed of this solu-
tion in comparison to Web 2.0 technologies. Specific benefits
have been identified in the following areas.

A. Application Stability

Current web technologies force the developer to im-
plement dynamic user interface actions within complex
Javascript or closed-source web browser plugins. The pro-
posed system provides a complete runtime environment
(which had historically been limited to thick applications) to
the user interface component of the application. Interaction
is tightly controlled via callbacks and stub functions. No
direct DOM access is provided, which enforces a strict
implementation strategy and good programming techniques
on the developer. It also reduces overall bloat of the web
browser process, and brings stability of the solution through
distribution of execution. Each component implements the
concept of information hiding [19] which is a proven ben-
efit of component-based software engineering. The internal
structure of the browser is hidden away from component
code, while in comparison, malicious or unstable Javascript
has complete access to the user interface implemented
through the DOM.

B. Data Storage

The features provided by the distributed data storage
model ensure that users are responsible for their own data
storage. Web applications still retain full access to the data
they require for execution, but this access is facilitated by
remote calls to data storage components, as opposed to direct
access to large silos of local storage. The issues of data
freshness, data duplication, and data ownership are therefore
well addressed by this model, while they remain a key issue
with traditional web applications [20].

27

INTERNET 2012 : The Fourth International Conference on Evolving Internet

C. Resource utilisation

A key issue with the increased uptake of web applications
is that local resources are becoming highly under-utilised.
Local CPUs and data storage are only used to facilitate
execution of the web browser process, while the majority
of the work is performed by the server(s) hosting the web
application. In comparison, the presented system performs
execution in a way that allows sharing of load between any
resources that a user has rights to use. A specific application
may have components executing on the local machine, on a
server, or in the cloud, all at the same time, in a distributed
and transparent manner.

D. Transaction Support

Transaction managers in current web applications are
limited to visibility of tasks executing within the web
application itself. For example, if a user closes their web
browser mid-transaction then often that transaction is left
hanging to time-out. By moving the orchestration of the
user interface out of the web browser into a specific user
interface component, it becomes possible to track tasks
within a transaction all the way from the user interface to
the data storage system. This allows software developers
to create a transaction that may involve data persistence
tasks, calculation tasks, and user interaction tasks, all in the
one atomic action and not wholly dependent on continued
execution of the interface.

E. Cloud Computing

The proposed design also promotes extended use of Cloud
Computing concepts. Currently, for a web application to
execute within the cloud it is commonly seen that the
complete application must be wholly encompassed in the
one cloud environment. Any inter-cloud communication is
restricted to application-level interactions such as web ser-
vice calls and message passing. Code executing in one cloud
must specifically be aware that access to code in another
cloud requires a manual call over the network. The design
presented in this paper abstracts component communication
in such a way that building of applications out of inter-
cloud components is greatly simplified. Each participating
Cloud instance houses its own runtime environment with its
own component communication bus. The user’s namespace
tracks the location of each instantiated component and
abstracts the inter-cloud communication back to inter-bus
communication.

FE. Application Access

This design provides benefits in the area of application
access and startup when compared to existing technologies.
The bootstrap process is initiated when a user attempts to ac-
cess an application built according to this component-based
design. The bootstrapping ensures that only the initially

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

required components are dynamically downloaded, instan-
tiated and executed. Existing technologies such as Java Web
Start [21], in comparison, must automatically download the
component application bundle before execution can begin.

VI. METRICS

During the development of this system we regularly
compared with current techniques to ensure that existing
levels of performance and stability were maintained by our
new architecture. Initial metrics have been collected on the
following data points:

« Total bytes transferred per web transaction.
o Total round-trip time per web transaction.

These metrics were recorded using a user login event as
an example of a typical transaction. The user login event
comprised the following high-level tasks:

1) Render static login page to user.

2) Accept user input and perform basic data validation.

3) Encrypt provided user credentials.

4) Pass credentials from user interface to authentication
component.

5) Decrypt provided user credentials.

6) Access a persistent data store of user credentials.

7) Authenticate the user and generate a token.

8) Pass the token back through the authentication com-
ponent to the user interface.

9) Report to the user if authentication was successful.

In the traditional approach this design would be imple-
mented using a web browser, a web application, and a
relational database. In comparison, according to our new
architecture the following components were generated:

o User interface in HTMLS rendered by the web browser.

o A user interface component executing on the user’s
local machine (that also hosts the web browser).

« An authentication component executing on a local
server.

« An encryption component executing on a local server.

o A data access component for the User object executing
in Amazon EC2.

o A relational database also executing within Amazon
EC2.

Figure 3 compares the respective total user round-trip
time experience for the traditional and proposed implemen-
tation architectures. Round-trip is measured and displayed
as the number of concurrent users increases. These metrics
were collected using the Grinder tool on a tuned VM that
represents a typical system under load. As can be seen,
the proposed new solution tracks closely in performance
with existing conventional approaches. A minor constant
overhead is identified, and can be explained by the increased
level of internal inter-component messaging required to
implement the increased level of message flow required by
the new system. This constant overhead is comparable to

28

INTERNET 2012 : The Fourth International Conference on Evolving Internet

overheads observed in more complex traditional websites,
where the login function is more complicated than a simple
relational database lookup.

@m==Round-trip OLD (ms)

Round-trip (ms)
@
3

Round-trip NEW (ms)

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Concurrent Users

Figure 3. Round-trip comparison

Figure 4 presents comparison between the respective total
bytes transferred for each architecture. Each value plotted is
the sum total of all bytes transferred between all components
in the experiment. Transfer of bytes is measured between the
following points in the communication flow:

« Web browser and web server.

o Components and the bus.

o The bus and other components.

o Components and the data storage solution.

The comparative total bytes transferred tracks as expected
when additional inter-component messaging requirements of
the new solution is considered. This increase in volume
of traffic is easily absorbed by the proposed new architec-
ture because components can be distributed across multiple
environments, and the additional bandwidth requirements
accordingly amortised.

35000

30000 /

25000

20000

@==Bytes OLD (bytes)
15000
e===gytes NEW (bytes)

Total Bytes Transferred

10000

5000

0
1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Concurrent Users

Figure 4. Total-bytes comparison

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-204-2

VII. CONCLUSION AND FUTURE WORK

The system architecture presented in this paper continues
to evolve as we seek to find the right mix between web appli-
cation, thick application, and app-store style environments.
The ”Super Browser” concept is realised as an abstraction,
with the web browser becoming but one component in the
overall system. To the software developer, applications are
generated as a collection of inter-related components, with-
out the need for the developer to be specifically concerned
with how and where the components are executed. The
full benefits of a component-based software engineering
approach are realised, including the ability for systems
to be designed to include off-the-shelf components. The
solution presented is backwards compatible with existing
web standards because the Web Browser is used as the
realisation of the user interface. A Web Browser support-
ing the new system can seamlessly access both traditional
Web 2.0 applications and applications developed using this
component-based approach. The implementation is currently
being finalised, with the presented metrics suggesting that
performance of the new system architecture is no worse than
for existing Web 2.0 technologies. The feature comparison
summarised in the evaluation section shows that from a
feature perspective the new model provides many benefits
over existing technologies. The role of the web browser
itself is simplified by distributing the hotspots such as code
execution and security to a component-based design. The
web browser returns to its original role of providing a
user interface. This solution provides the additional ben-
efit of allowing applications to transparently be built out
of distributed components. These components can execute
anywhere the user can access resources - such as on mo-
bile devices, within server farms, or in Cloud Computing
implementations.

The following items of future work have been identified:

o Further runtime environment development to cater for
programming languages other than Java.

« Enhanced component locality functionality to reduce
the reliance on a single component location directory.

« A comparison of security between the new user inter-
face component design and the concept of web browser
plugin process sandboxing.

« Enhancements that allow multiple users to share the
same instance of a component communication bus.

« Further experimental results, specifically in comparison
to existing technologies.

While the implementation of the design during this initial
work is in that of middleware, the final implementation will
most likely be a shared implementation across middleware
and operating system. Current operating systems do not
provide a component-based execution model suitable for ex-
ecuting the above described components, but it is envisaged
that execution of these components will become a native

29

INTERNET 2012 : The Fourth International Conference on Evolving Internet

feature of the operating system in the future.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

Copyright (c) IARIA, 2012.

REFERENCES

WebDevout. (2009, November) Web browser security
statistics, http://www.webdevout.net/browser-security. [On-
line]. Available: http://www.webdevout.net/browser-security.
(cited April 2012)

D. Coursey, “Html5 could be the os killer,” PCWorld Business
Centre, 2009.

C. Reis, A. Barth, and C. Pizano, “Browser security: lessons
from google chrome,” Commun. ACM, vol. 52, no. 8, pp.
45-49, 2009.

G. Boss, P. Malladi, D. Quan, L. Legregni, and
H. Hall. (2007, October) Cloud computing. [Online]. Avail-
able: http://download.boulder.ibm.com/ibmdl/pub/software/
dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf. (cited
June 2010)

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg,
and I. Brandic, “Cloud computing and emerging it
platforms: Vision, hype, and reality for delivering

computing as the Sth utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599 - 616, 2009. [On-
line]. Available: http://www.sciencedirect.com/science/article/
B6V06-4V47C7R-1/2/d339f420¢2691994442¢9198e00ac87e

M. Brandel, “The trouble with cloud: Vendor lock-in,”
CIO.com, 2009.

Adobe Systems Incorporated. (2012) Adobe flash. [Online].
Available: http://www.adobe.com/products/flashplayer.html

Microsoft. (2012) Microsoft silverlight. [Online]. Available:
http://www.microsoft.com/silverlight/

W3C. (2004) Web services architecture. [Online]. Available:
http://www.w3.org/TR/ws-arch/

M. P. Papazoglou and B. Kratz, “Web services technology in

support of business transactions,” Service Oriented Comput-
ing and Applications, vol. 1, no. 1, pp. 51-63, April 2007.

ISBN: 978-1-61208-204-2

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

I. Hickson and I. Google, HTML 5 Specification, editors
draft ed., W3C, 2012. [Online]. Available: http://dev.w3.org/
html5/spec/Overview.html

D. Flanagan, Javascript: the definitive guide. O’Reilly, 2002.
D. A. Chappell, Enterprise Service Bus. O’Reilly, 2004.

P-P. Koch. (2012) Quirksmode w3c dom compatability

tables. [Online]. Available: http://www.quirksmode.org/
compatibility.html
M. Wallis, F. Henskens, and M. Hannaford, ‘Pub-

lish/subscribe model for personal data on the internet,” in 6th
International Conference on Web Information Systems and
Technologies (WEBIST-2010). INSTICC, April 2010.

——, “Web 2.0 data: Decoupling ownership from provision,”
International Journal on Advances in Internet Technology,
issn 1942-2652, vol. 4, no. 1 and 2, year 2011, pp. 47 — 59,
2011.

Mozilla Foundation. (2008) Mozilla - about.
Available: http://www.mozilla.org/about/

[Online].

Java. (2012) Glassfish - open source application server.
[Online]. Available: http://glassfish.java.net

D. Parnas, “On the criteria to be used in decomposing systems
into modules,” Communications of the ACM, Issue 12, vol. 15,
1972.

M. Wallis, F. Henskens, and M. Hannaford, “A distributed
content storage model for web applications,” in INTERNET
2010, 2010, pp. 98 — 103.

Oracle. (2011) What is java web start and how is
it launched? [Online]. Available: http://www.java.com/en/
download/fag/java_webstart.xml

30

